Execute application with Gitea Actions #4
13
.env_example
13
.env_example
@ -1,6 +1,7 @@
|
|||||||
OPENAI_API_KEY =
|
INPUT_VIDEO_URL=
|
||||||
OPENAI_BASE_URL =
|
OPENAI_API_KEY=
|
||||||
OPENAI_RESPONSES_PROMPT =
|
OPENAI_BASE_URL=
|
||||||
SEGMENT_DURATION =
|
OPENAI_TRANSCRIPTION_MODEL=
|
||||||
TMP_AUDIO_PATH =
|
OPENAI_CHAT_SYSTEM_PROMPT=
|
||||||
TMP_VIDEO_PATH =
|
OPENAI_CHAT_MODEL=
|
||||||
|
OPENAI_CHAT_N=
|
||||||
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,2 +1,4 @@
|
|||||||
|
__pycache__/*
|
||||||
|
tmp/*
|
||||||
venv/*
|
venv/*
|
||||||
.env
|
.env
|
||||||
|
81
app.py
81
app.py
@ -1,15 +1,26 @@
|
|||||||
import os
|
import os
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
from dotenv import load_dotenv
|
|
||||||
from moviepy import VideoFileClip
|
from moviepy import VideoFileClip
|
||||||
from openai import OpenAI
|
from openai import OpenAI
|
||||||
from pydub import AudioSegment
|
from pydub import AudioSegment
|
||||||
|
|
||||||
DEFAULT_PROMPT = "You will be provided a video transcription for which you are to generate a blog post in Markdown format summarizing the video contents."
|
DEFAULT_PROMPT = "The user will provided a video transcription for which you are to generate a blog post in Markdown format summarizing the video contents. Please only output the blog post content."
|
||||||
|
VIDEO_URL = os.getenv('INPUT_VIDEO_URL', None)
|
||||||
|
OUTPUT_PATH = os.getenv('OUTPUT_PATH', 'tmp')
|
||||||
|
AUDIO_SEGMENT_DURATION = 30000
|
||||||
|
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY', None)
|
||||||
|
OPENAI_BASE_URL = os.getenv('OPENAI_BASE_URL', 'https://api.openai.com/v1')
|
||||||
|
OPENAI_TRANSCRIPTION_MODEL = os.getenv('OPENAI_TRANSCRIPTION_MODEL', 'whisper-1')
|
||||||
|
OPENAI_CHAT_SYSTEM_PROMPT = os.getenv('OPENAI_CHAT_SYSTEM_PROMPT', DEFAULT_PROMPT)
|
||||||
|
OPENAI_CHAT_MODEL = os.getenv('OPENAI_CHAT_MODEL', 'whisper-1')
|
||||||
|
OPENAI_CHAT_N = int(os.getenv('OPENAI_CHAT_N', '3'))
|
||||||
|
|
||||||
def main(args):
|
def main():
|
||||||
openai_client = OpenAI()
|
openai_client = OpenAI(
|
||||||
|
base_url = OPENAI_BASE_URL,
|
||||||
|
api_key = OPENAI_API_KEY
|
||||||
|
)
|
||||||
return summarize_transcription(
|
return summarize_transcription(
|
||||||
openai_client,
|
openai_client,
|
||||||
transcribe_audio(
|
transcribe_audio(
|
||||||
@ -21,39 +32,51 @@ def main(args):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def get_video_from_url():
|
def get_video_from_url():
|
||||||
video_file_url = os.getenv('INPUT_VIDEO_URL')
|
filename = VIDEO_URL.split('/')[-1]
|
||||||
video_file_path = os.getenv('TMP_VIDEO_PATH' , '/tmp/video_summary_bot_tmp_video.mp4')
|
with open(f"{OUTPUT_PATH}/{filename}", 'wb') as f:
|
||||||
request = requests.get(video_file_url)
|
for chunk in requests.get(VIDEO_URL).iter_content(chunk_size=255):
|
||||||
with open(video_file_path, 'wb') as f:
|
|
||||||
for chunk in requests.get(video_file_url).iter_content(chunk_size=255):
|
|
||||||
if chunk:
|
if chunk:
|
||||||
f.write(chunk)
|
f.write(chunk)
|
||||||
|
return filename
|
||||||
|
|
||||||
def get_audio_from_video():
|
def get_audio_from_video(video_filename):
|
||||||
tmp_audio_path = os.getenv('TMP_AUDIO_PATH', '/tmp/video_summary_bot_tmp_audio.wav')
|
VideoFileClip(f"{OUTPUT_PATH}/{video_filename}").audio.write_audiofile(f"{OUTPUT_PATH}/{video_filename}.wav")
|
||||||
video_file_path = os.getenv('TMP_VIDEO_PATH')
|
audio = AudioSegment.from_wav(f"{OUTPUT_PATH}/{video_filename}.wav")
|
||||||
VideoFileClip(video_file_path).audio.write_audiofile(tmp_audio_path)
|
segments = []
|
||||||
return AudioSegment.from_wav(tmp_audio_path)
|
for i in range(0, len(audio), AUDIO_SEGMENT_DURATION):
|
||||||
|
segment = audio[i:i + AUDIO_SEGMENT_DURATION]
|
||||||
|
path = f"{OUTPUT_PATH}/audio_segment_{i // AUDIO_SEGMENT_DURATION}.wav"
|
||||||
|
segments.append(path)
|
||||||
|
segment.export(path, format='wav')
|
||||||
|
return segments
|
||||||
|
|
||||||
def transcribe_audio(openai_client, audio):
|
def transcribe_audio(openai_client, audio_segments):
|
||||||
segment_duration = int(os.getenv('SEGMENT_DURATION', 30000)),
|
|
||||||
transcription_model = os.getenv('OPENAI_TRANSCRIPTION_MODEL', 'whisper-1')
|
|
||||||
return ' '.join([
|
return ' '.join([
|
||||||
openai_client.audio.transcriptions.create(
|
openai_client.audio.transcriptions.create(
|
||||||
model=transcription_model,
|
model=OPENAI_TRANSCRIPTION_MODEL,
|
||||||
file=each
|
file=open(each, 'rb')
|
||||||
).text for each in [audio[i:i + segment_duration] for i in range(0, len(audio), segment_duration)]
|
).text for each in audio_segments
|
||||||
])
|
])
|
||||||
|
|
||||||
def summarize_transcription(openai_client, transcription):
|
def summarize_transcription(openai_client, transcription):
|
||||||
prompt = os.getenv('OPENAI_RESPONSES_PROMPT', DEFAULT_PROMPT)
|
return openai_client.chat.completions.create(
|
||||||
responses_model = os.getenv('OPENAI_RESPONSES_MODEL', 'whisper-1')
|
model=OPENAI_CHAT_MODEL,
|
||||||
return client.responses.create(
|
n=OPENAI_CHAT_N,
|
||||||
model=responses_model,
|
messages = [
|
||||||
instructions=prompt,
|
{"role": "developer", "content": OPENAI_CHAT_SYSTEM_PROMPT},
|
||||||
input=transcription
|
{"role": "user", "content": transcription}
|
||||||
)
|
]
|
||||||
|
).choices
|
||||||
|
|
||||||
|
def setup():
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
def cleanup():
|
||||||
|
os.rmdir(OUTPUT_PATH)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
load_dotenv()
|
setup()
|
||||||
main(parser.parse_args())
|
for each in main():
|
||||||
|
print("========")
|
||||||
|
print(each.message.content)
|
||||||
|
Loading…
Reference in New Issue
Block a user