video-summary-bot/app.py
2025-03-27 15:41:26 -04:00

83 lines
2.9 KiB
Python

import os
import requests
from moviepy import VideoFileClip
from openai import OpenAI
from pydub import AudioSegment
DEFAULT_PROMPT = "The user will provided a video transcription for which you are to generate a blog post in Markdown format summarizing the video contents. Please only output the blog post content."
VIDEO_URL = os.getenv('INPUT_VIDEO_URL', None)
OUTPUT_PATH = os.getenv('OUTPUT_PATH', 'tmp')
AUDIO_SEGMENT_DURATION = 30000
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY', None)
OPENAI_BASE_URL = os.getenv('OPENAI_BASE_URL', 'https://api.openai.com/v1')
OPENAI_TRANSCRIPTION_MODEL = os.getenv('OPENAI_TRANSCRIPTION_MODEL', 'whisper-1')
OPENAI_CHAT_SYSTEM_PROMPT = os.getenv('OPENAI_CHAT_SYSTEM_PROMPT', DEFAULT_PROMPT)
OPENAI_CHAT_MODEL = os.getenv('OPENAI_CHAT_MODEL', 'whisper-1')
OPENAI_CHAT_N = int(os.getenv('OPENAI_CHAT_N', '3'))
def main():
openai_client = OpenAI(
base_url = OPENAI_BASE_URL,
api_key = OPENAI_API_KEY
)
return summarize_transcription(
openai_client,
transcribe_audio(
openai_client,
get_audio_from_video(
get_video_from_url()
)
)
)
def get_video_from_url():
filename = VIDEO_URL.split('/')[-1]
with open(f"{OUTPUT_PATH}/{filename}", 'wb') as f:
for chunk in requests.get(VIDEO_URL).iter_content(chunk_size=255):
if chunk:
f.write(chunk)
return filename
def get_audio_from_video(video_filename):
VideoFileClip(f"{OUTPUT_PATH}/{video_filename}").audio.write_audiofile(f"{OUTPUT_PATH}/{video_filename}.wav")
audio = AudioSegment.from_wav(f"{OUTPUT_PATH}/{video_filename}.wav")
segments = []
for i in range(0, len(audio), AUDIO_SEGMENT_DURATION):
segment = audio[i:i + AUDIO_SEGMENT_DURATION]
path = f"{OUTPUT_PATH}/audio_segment_{i // AUDIO_SEGMENT_DURATION}.wav"
segments.append(path)
segment.export(path, format='wav')
return segments
def transcribe_audio(openai_client, audio_segments):
return ' '.join([
openai_client.audio.transcriptions.create(
model=OPENAI_TRANSCRIPTION_MODEL,
file=open(each, 'rb')
).text for each in audio_segments
])
def summarize_transcription(openai_client, transcription):
return openai_client.chat.completions.create(
model=OPENAI_CHAT_MODEL,
n=OPENAI_CHAT_N,
messages = [
{"role": "developer", "content": OPENAI_CHAT_SYSTEM_PROMPT},
{"role": "user", "content": transcription}
]
).choices
def setup():
from dotenv import load_dotenv
load_dotenv()
def cleanup():
os.rmdir(OUTPUT_PATH)
if __name__ == '__main__':
setup()
for each in main():
print("========")
print(each.message.content)